Distribution Functions for Random Variables for Ensembles of Positive Hermitian Matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution Functions for Random Variables for Ensembles of Positive Hermitian Matrices

Distribution functions for random variables that depend on a parameter are computed asymptotically for ensembles of positive Hermitian matrices. The inverse Fourier transform of the distribution is shown to be a Fredholm determinant of a certain operator that is an analogue of a Wiener-Hopf operator. The asymptotic formula shows that up to the terms of order o(1), the distributions are Gaussian.

متن کامل

Wigner surmise for Hermitian and non-Hermitian chiral random matrices.

We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...

متن کامل

Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum

Given the Hermitian, symmetric and symplectic ensembles, it is shown that the probability that the spectrum belongs to one or several intervals satisfies a nonlinear PDE. This is done for the three classical ensembles: Gaussian, Laguerre and Jacobi. For the Hermitian ensemble, the PDE (in the boundary points of the intervals) is related to the Toda lattice and the KP equation, whereas for the s...

متن کامل

Uniformly Generating Distribution Functions for Discrete Random Variables

An algorithm is presented which, with optimal efficiency, solves the problem of uniform random generation of distribution functions for an n-valued random variable.

متن کامل

Gaussian fluctuations for non-Hermitian random matrix ensembles

Consider an ensemble of N ×N non-Hermitian matrices in which all entries are independent identically distributed complex random variables of mean zero and absolute mean-square one. If the entry distributions also possess bounded densities and finite (4 + ε) moments, then Z. D. Bai [Ann. Probab. 25 (1997) 494–529] has shown the ensemble to satisfy the circular law: after scaling by a factor of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1997

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s002200050167